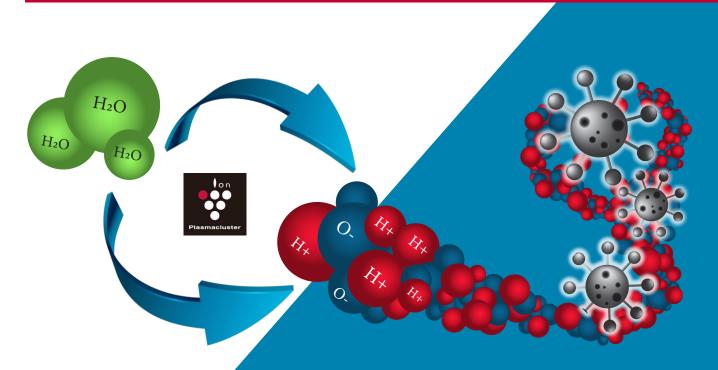
IONFUL FUJITEC

00

I IONFUL®

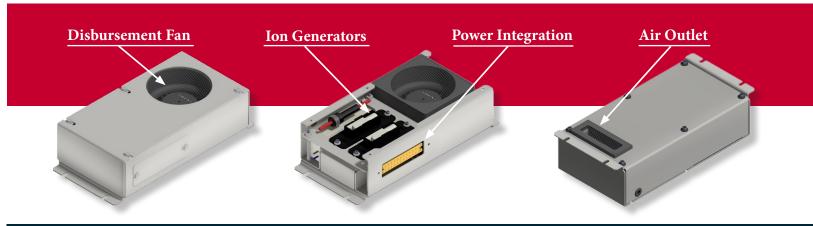

Fujitec i⁽²⁾ IONFUL®

How?

Improve the Air You Breathe

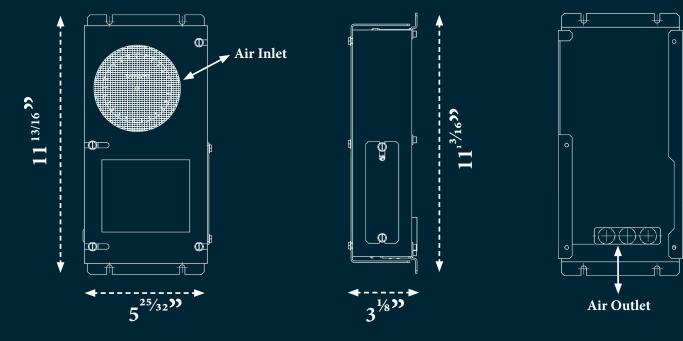
Utilizing Sharp's revolutionary patented Plasmacluster[®] technology, i⁽²⁾IONFUL[®]breaksdownwatermoleculesintopositivelyandnegatively charged ions. These ions circulate through the cab, surround and attach to airborne pollutants and recombine into harmless water molecules.

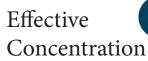
*Indoor concentrations of ozone brought in from outside are typically 0.01- 0.02 ppm... could be as high as 0.03 - 0.05 ppm.



Plasmacluster technology produces less than .01ppm of ozone.

Safe for humans Quick installation Over 55,000 Ionful sold worldwide Can achieve up to 99% inactivation Proactively mitigates exposure Minimal maintenance required Vetted by medical & academic testing Mimics nature's process of cleaning air


FUJITEC


Side View

Installation

The i⁽²⁾ Ionful[®] air purification is typically installed in the swing return or COP. It is programmed in tandem with cab operation and shuts off when the elevator transitions into sleep mode.

Plasmacluster[®] concentrations of 3,000 n/ cm3 to 7,000 n/cm3 prove to be effective in combating airborne viruses, bacteria, mold and odors. Please refer to the next page for studies on effectiveness.

0-

H+

Target Concentration

With target effectiveness between 3,000 to 7,000 n/cm3, $i^{(2)}$ Ionful delivers 8,000 to 14,000 n/cm3 under standard operation. Fluctuating concentration levels recover to efficacy levels within 5 seconds when doors close.

Ionful is UL certified as a recognized component and additionally carries certification from the California Air Resource Board.

Plasmacluster[™] Successful Inactivation Research

Substance	Species	Testing	Date
Viruses	COVID-19	Nagasaki University, Japan	September 2020
	H1N1 human influenza virus	Kitasato Institute Medical Center Hospital, Japan	February 2004
	H5N1 avian influenza virus	Retroscreen Virology, Ltd., London, UK	May 2005 • August 2008
	SARS virus (Corona family)	Retroscreen Virology, Ltd., London, UK	October 2005
	Coxsackie virus	Kitasato Research Center of Environmental Sciences, Japan	September 2002
	Polio virus	Kitasato Research Center of Environmental Sciences, Japan	September 2002
	Feline Corona virus	Kitasato Institute Medical Center Hospital, Japan	July 2004
	New-type H1N1 influenza virus	Retroscreen Virology, Ltd., London, UK	November 2009
Bacteria	Coliform bacteria (E.coli)	Ishikawa Health Service Assoc., Japan	September 2000
	MRSA (methicillin-resistant Staphylococcus aureus)	Kitasato Institute Medical Center Hospital, Japan	February 2004
	Enterococcus, Staphylococcus, Sarcina, Micro-coccus	Aachen University of Applied Sciences, Germany	November 2004
Allergens	Mite allergens, pollen	Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan	September 2003

Note: The table above was compiled from Sharp Corporation's release on November 2, 2009 entitled: "For First Time Ever*1, Plasmacluster*2 Ions Shown to Inhibit Infectivity of New-Type H1N1 Influenza Virus in Both Stationary and Airborne Form; Verified in Collaboration with Retroscreen Virology Ltd.*3 of the UK" <u>https://global.sharp/pci/en/certified/pdf/viruses_02.pdf.</u> Efficacy in inhibiting activity of the airborne target substances noted above was verified by exposing the substances to an ion concentration of at least 3,000 ions/cm3.

fujitecAMERICA.com

FUJITEC